«« Laser Engraving »»



Laser Engraving Materials

Laser Engraving - Woods/Natural Materials

Directly "burning" images on wood were some of the first uses of engraving lasers. The laser power required here is often less than 10 watts. Hardwoods like walnut, oak, mahogany and maple produce good results. Softwoods can be judiciously engraved but tend to vaporize at less-consistent depths. Burning a softwood with a fan blowing on it requires lowest power, quickest speed of cut, and enough airflow to extinguish what is trying meanwhile to ignite. Hard papers and fiberboard work well; linty papers and newsprint are like softwoods. Fur is not engraveable; finished leathers though can be laser-engraved with a look very similar to hot-branding. Certain latex rubber compounds can be laser engraved; for example these can be used to fabricate inking-stamps.

Paper masking tape is sometimes used as a pre-engraving overcoat on finished and resiny woods so that cleanup is a matter of picking the tape off and out of the unengraved areas, which is easier than removing the sticky and smoky surround "halos" (and requires no varnish-removing chemicals).

Laser Engraving - Plastics

Standard cast acrylic plastic, acrylic plastic sheet, and other cast resins generally laser very well. A commonly engraved award is a cast acrylic shape designed to be lasered from the back side. Styrene (as in compact disc cases) and many of the thermoforming plastics will tend to melt around the edge of the engraving spot. The result is usually "soft" and has no "etch" contrast. The surface may actually deform or "ripple" at the lip areas. In some applications this is acceptable; for example date markings on 2-litre soda bottles does not need to be sharp.

For signage and faceplates, etc., special laser-engraving plastics were developed. These incorporate silicate or other materials which conduct excess heat away from the material before it can deform. Outer laminates of this material vaporize easily to expose different colored material below.

Other plastics may be successfully engraved, but orderly experimentation on a sample piece is recommended. Bakelite is said to be easily laser-engraved; some hard engineering plastics work well. Expanded plastics, foams and vinyls however are generally candidates for routing rather than laser engraving. Urethane and silicone plastics usually don't work well-- unless it is a formulation filled with cellulose, stone or some other stable insulator material.

Laser Engraving - Metals

The best traditional engraving materials started out to be the worst laser-engravable materials. This problem has now been solved using lasers at shorter wavelengths than the traditional 10,640nm wavelength CO2 laser. Using Nd:YVO4 technology at 1,064nm wavelength, or its harmonics at 532 and 355nm, metals can now easily be engraved using commercial systems.

Laser Engraving - Coated Metals

However, the same conduction that works against the spot vaporization of metal is an asset if your objective is to vaporize some other coating away from the metal. Laser engraving metal plates are manufactured with a finely-polished metal, coated with an enamel paint made to be "burned off". At levels of 10-30 watts, excellent engravings are made as the enamel is removed quite cleanly. Much laser engraving is sold as exposed brass or silver-coated steel lettering on a black or dark-enamelled background. A wide variety of finishes is now available, including screen-printed marble effects on the enamel.

Laser Engraving - Stone and Glass

Stone and glass do not turn gaseous very easily. As expected, this makes them generally a better candidate for other means of engraving, most notably sandblasting or cutting using diamonds and water. But when a laser hits glass or stone, something else interesting happens: it fractures. Pores in the surface expose natural grains and crystalline "stubs" which, when heated very quickly, can separate a microscopic sized "chip" from the surface because the hot piece is expanding relative to its surroundings. So lasers are indeed used to engrave on glass, and if the power, speed and focus are just right, excellent results can be achieved. One should avoid large "fill" areas in glass engraving because the results across an expanse tend to be uneven; the glass ablation simply cannot be depended on for visual consistency, which may be a disadvantage or an advantage depending on the circumstances and the desired effect.

You can also use laser engraving for other matreials, such as jewelry, stones, firearms, guns, marble, photos, ipods and leather.